Towards Causal Reinforcement Learning (CRL)

Elias Bareinboim

Causal Artificial Intelligence Lab Columbia University

Slides: <u>https://crl.causalai.net</u> ICML, 2020

JOINT WORK WITH **CAUSAL AI LAB & COLLABORATORS**

Yotam Alexander (Columbia) Juan Correa (Columbia) Kai-Zhan Lee (Columbia) Sanghack Lee (Columbia) Adele Ribeiro (Columbia) Kevin Xia (Columbia) Junzhe Zhang (Columbia) Amin Jaber (Purdue) Chris Jeong (Purdue) Yonghan Jung (Purdue) **Daniel Kumor (Purdue)**

Judea Pearl (UCLA) Carlos Cinelli (UCLA) Andrew Forney (UCLA) Brian Chen (Brex) Jin Tian (Iowa State) Duligur Ibeling (Stanford) Thomas Icard (Stanford) Murat Kocaoglu (IBM)

Karthikeyan Shanmugam (IBM) Jiji Zhang (Lingnan University) Paul Hünermund (Copenhagen)

CausalAI Lab

Structural Causal Models

1. Explainability

(Effect identification and decomposition, Bias Analysis and Fairness, Robustness and Generalizability)

2. Decision-Making

(Reinforcement Learning, Randomized Controlled Trials, Personalized Decision-Making)

3. Applications, Education, Software

Data Science:

Principled ("scientific") inferences from large data collections.

AI-ML:

Principles and tools for designing robust and adaptable learning systems.

What is Causal RL?

- Reinforcement Learning (RL) is awesome at handling sample complexity and credit assignment.
- Causal Inference (CI) is great at leveraging structural invariances across settings and conditions.
- Can we have the best of both worlds? Yes!

Simple solution:

Causal RL = CI + RL

Our goal: Provide a cohesive framework that takes advantage of the capabilities of both formalisms (from first principles), and that allows us to develop the next generation of AI systems.

Outline

- Part 1. Foundations of CRL (60')
 Intro to Structural Causal Models, Pearl Causal Hierarchy (PCH), Causal Hierarchy Theorem (CHT)
 Current RL & CI methods through CRL Lens
 Part 2. New Challenges and Opportunities of (60') Causal Reinforcement Learning
- Goal: Introduce the main ideas, principles, and tasks. Not focused on the implementation details.
- For a more detailed discussion, see: NeurIPS'15, PNAS'16, ICML'17, IJCAI'17, NeurIPS-18, AAAI-19, UAI-19, NeurIPS-19, ICML-20 ... + new CRL survey.

Resources: https://crl.causalai.net

PRELUDE: REINFORCEMENT LEARNING

What's Reinforcement Learning?

- Goal-oriented learning -- how to maximize a numerical reward signal.
- Learning about, from, and while interacting with an external environment.
- Adaptive learning -- each action is tailored for the evolving covariates and actions' history.

(Learning without having a full specification of the system; versus planning/programming)

RL - Big Picture

RL - Big Picture

- Receive feedback in the form of rewards.
- Agent's utility is defined by the reward function.
- Must (learn to) act so as to maximize expected rewards.

Causal RL - Big Picture

Causal RL - Big Picture

observational, interventional, counterfactual

observational, interventional, counterfactual

STRUCTURAL CAUSAL MODELS & CAUSAL GRAPHS

Processes

 $\begin{array}{l} \text{Drug} \leftarrow f_{D} \left(\text{Age}, \, U_{D} \right) \\ \text{Headache} \leftarrow f_{H} (\text{Drug}, \, \text{Age}, \, U_{H}) \end{array}$

Processes

 $\begin{array}{l} \text{Drug} \leftarrow f_{D} \left(\text{Age}, \, U_{D} \right) \\ \text{Headache} \leftarrow f_{H} (\text{Drug}, \, \text{Age}, \, U_{H}) \end{array}$

Intervention
 Drug ← Yes

• Processes Drug $\leftarrow f_D$ (Age, U_D) Headache $\leftarrow f_H$ (Drug, Age, U_H) • Intervention Drug $\leftarrow Yes$ Headache $\leftarrow f_H$ (Drug, Age, U_H)

• Processes Drug $\leftarrow f_D$ (Age, U_D) Headache $\leftarrow f_H$ (Drug, Age, U_H) • Intervention Drug $\leftarrow rand()$ Headache $\leftarrow f_H$ (Drug, Age, U_H)

• Processes Drug $\leftarrow f_D$ (Age, U_D) Headache $\leftarrow f_H$ (Drug, Age, U_H) • Intervention Drug $\leftarrow \prod(Age)$ Headache $\leftarrow f_H$ (Drug, Age, U_H)

• Processes Drug $\leftarrow f_D$ (Age, U_D) Headache $\leftarrow f_H$ (Drug, Age, U_H) • Intervention Drug $\leftarrow \prod(Age)$ Headache $\leftarrow f_H$ (Drug, Age, U_H)

• Processes Drug $\leftarrow f_D$ (Age, U_D) Headache $\leftarrow f_H$ (Drug, Age, U_H) • Intervention Drug $\leftarrow Yes$ Headache $\leftarrow f_H$ (Drug, Age, U_H)

• Processes Drug $\leftarrow f_D$ (Age, U_D) Headache $\leftarrow f_H$ (Drug, Age, U_H) • Intervention Drug $\leftarrow Yes$ Headache $\leftarrow f_H$ (Drug, Age, U_H)

• Processes • Intervention Drug $\leftarrow f_D$ (Age, U_D) Drug \leftarrow Yes Headache $\leftarrow f_H$ (Drug, Age, U_H) Headache $\leftarrow f_H$ (Drug, Age, U_H)

(observational)

(interventional) ¹⁴

• Processes • Intervention Drug $\leftarrow f_D$ (Age, U_D) Drug \leftarrow Yes Headache $\leftarrow f_H$ (Drug, Age, U_H) Headache $\leftarrow f_H$ (Drug, Age, U_H)

STRUCTURAL CAUSAL MODELS

Definition: A structural causal model M (or, data generating model) is a tuple (V, U, F, P(u)), where

- $V = \{V_1, ..., V_n\}$ are endogenous variables,
- $U = \{U_1, ..., U_m\}$ are exogenous variables,
- $F = \{f_1, ..., f_n\}$ are functions determining V, for each V_i, $V_i \leftarrow f_i(Pa_i, Ui)$, where $Pa_i \subset V$, $Ui \subset U$.
- P(u) is a distribution over U.

(Axiomatic characterization [Halpern, Galles, Pearl, 1998].)

Prop. SCM M implies Pearl Causal Hierarchy (PCH).

PEARL CAUSAL HIERARCHY (PCH)

PEARL CAUSAL HIERARCHY (PCH) (LADDER OF CAUSATION)

Causal RL - Big Picture

SCM \rightarrow PEARL CAUSAL HIERARCHY (PCH)

	Layer (Symbol)	Typical Activity	Typical Question	Examples	
	Associational P(y x)	Seeing ML - (Un)Supervised DT. Bayes net.	What is? How would seeing X change	What does a symptom tell us about the disease?	
		Regression, NN	my belief in Y?		
L_2	Interventional	Doing	What if?	What if I take	
Ŀ	P(y do(x), c)	ML - Reinforcement Causal BN, MDP	What if I do X?	headache be cured?	
L ₃	Counterfactua	I Imagination,	Why?	Was it the	
	$P(y_x \mid x', y')$	Introspection	What if I had acted differently?	stopped my	
		Structural Causal Mod			

SCM → PEARL CAUSAL HIERAF

	Layer (Symbol)	Typical Activity	Typical Question	
	Associational P(y x)	Seeing ML - (Un)Supervised DT, Bayes net, Regression, NN	What is? How would seeing X char my belief in Y'	
L2	Interventional P(y do(x), c)	Doing ML - Reinforcement Causal BN, MDP	What if? What if I do X'	
L ₃	Counterfactua P(y _x x', y')	I Imagination, Introspection	Why? What if I had acted different	
	Structural Causal Model			

description of environment

more detailed

 L_1

less

detailed

 L_2

 L_3

CAUSAL HIERARCHY THEOREM

[Bareinboim, Correa, Ibeling, Icard, 2020]

Given that an SCM $M \rightarrow PCH$, we can show the following:

Theorem (CHT). With respect to Lebesgue measure over (a suitable encoding of L_3 -equivalence classes of) SCMs, the subset in which any PCH 'collapse' is measure zero.

Informally, for almost any SCM (i.e., almost any possible environment), the PCH does not collapse, i.e., the layers of the hierarchy remains distinct.

Corollary. To answer question at Layer i (about a certain interaction), one needs knowledge at layer i or higher.

WHY IS CAUSAL INFERENCE "NON-TRIVIAL"? SCMs ARE ALMOST NEVER OBSERVED

WHY IS CAUSAL INFERENCE "NON-TRIVIAL"? SCMs ARE ALMOST NEVER OBSERVED

WHY IS CAUSAL INFERENCE "NON-TRIVIAL"? SCMs ARE ALMOST NEVER OBSERVED

ENCODING STRUCTURAL CONSTRAINTS — CLASSES OF CAUSAL GRAPHS

ENCODING STRUCTURAL CONSTRAINTS CLASSES OF CAUSAL GRAPHS

KEY POINTS (SO FAR)

- The environment (mechanisms) can be modeled as an SCM
 - SCM M (specific environment) is rarely observable
- Still, each SCM M can be probed through qualitatively different types of interactions (distributions) -- the PCH -- i.e.:
 - L₁: Observational
 - L₂: Interventional
 - L₃: Counterfactual
- CHT (Causal Hierarchy Thm.): For almost any SCM, lower layers (say, L_i) underdetermines higher layers (L_{i+1}).
 - This delimits what an agent can infer based on the different types of interactions (and data) it has with the environment;
 - For instance, from passively observing the environment (L₁), it cannot infer how to act (L₂).
 - From intervening in the environment (L₂), it can't infer how things would have been had she acted differently (L₃).

• Causal Graph G is a surrogate of the invariances of the SCM M.

CURRENT METHODS IN RL & CI THROUGH CRL LENS

REINFORCEMENT LEARNING AND CAUSAL INFERENCE

Goal: Learn a policy \prod s.t. sequence of actions $\prod(.) = (X_1, X_2..., X_n)$ maximizes reward $E_{\prod}[Y \mid do(X)]$.

Current strategies found in the literature (circa 2020):

1. Online learning

- Agent performs experiments herself
- Input: experiments {(do(X_i), Y_i)}; Learned: P(Y | do(X))
- 2. Off-policy learning

Offline

- Agent learns from other agents' actions
- Input: samples {(do(X_i), Y_i)}; Learned: P(Y | do(X))
- 3. Do-calculus learning
 - Agent observes other agents acting
 - Input: samples {(X_i, Y_i)}, G; Learned: P(Y | do(X))

REINFORCEMENT LEARNING AND CAUSAL INFERENCE

Goal: Learn a policy \prod s.t. sequence of actions $\prod(.) = (X_1, X_2..., X_n)$ maximizes reward $E_{\prod}[Y \mid do(X)]$.

Current strategies found in the literature (circa 2020):

1. Online learning $(\rightarrow \mathbf{b})$

)ffline

- Agent performs experiments herself
- Input: experiments {(do(X_i), Y_i): I earned: P(Y | do(X))
- 2. Off-policy learning ($harponic \rightarrow harponic \rightarrow harpon$
 - Agent learns from other agents' actions
 - Input: samples {(do(X_i), Y_i)}· I earned: P(Y | do(X))
- 3. Do-calculus learning ($\bigcirc \rightarrow \checkmark$)
 - Agent observes other agents acting
 - Input: samples {(X_i, Y_i)}, G; Learned: P(Y | do(X))

REINFORCEMENT LEARNING AND CAUSAL INFERENCE

Goal: Learn a policy \prod s.t. sequence of actions $\prod(.) = (X_1, X_2..., X_n)$ maximizes reward $E_{\prod}[Y \mid do(X)]$.

Current strategies found in the literature (circa 2020):

1. Online learning $(\rightarrow do(x))$

Offline

- Agent performs experiments herself
- Input: experiments {(do(X_i), Y_i)}; Learned: P(Y | do(X))
- 2. Off-policy learning $(do(x) \rightarrow do(x))$
 - Agent learns from other agents' actions
 - Input: samples {(do(X_i), Y_i)}; Learned: P(Y | do(X))
- 3. Do-calculus learning (see(v) \rightarrow do(x))
 - Agent observes other agents acting
 - Input: samples {(X_i, Y_i)}, G; Learned: P(Y | do(X))

1. ONLINE LEARNING

- Finding x* is immediate once E[Y | do(X)] is learned.
 E[Y | do(X)] can be estimated through randomized experiments or adaptive strategies.
 - Pros: Robust against unobserved confounders (UCs)
 - Cons: Experiments can be expensive or impossible

1. ONLINE LEARNING

- Finding x* is immediate once E[Y | do(X)] is learned.
 E[Y | do(X)] can be estimated through randomized experiments or adaptive strategies.
 - Pros: Robust against unobserved confounders (UCs)
 - Cons: Experiments can be expensive or impossible

* More details: [Fisher, 1936; Auer et al., 2002; Jaksch et al., 2010; Lattimore et al., 2016]. 25

1. ONLINE LEARNING

* Online learning can be improved thr. causal machinery [ZB, ICML'20].

NOTE: COVARIATE-SPECIFIC CAUSAL EFFECTS (CONTEXTUAL)

 Model can be augmented to accommodate set of observed covariates C (also known as context); U is the set of (remaining) unobserved confounders (UCs).

(decision) X Deep learning

 Goal: learn a policy ∏(c) so as to optimize based on the c-specific causal effect, P(Y | do(X), C = c).

2. OFF-POLICY LEARNING

 E[Y | do(X)] can be estimated through experiments conducted by other agents and different policies.

- Pros: no experiments need to be conducted
- Cons: rely on assumptions that (a1) same variables were randomized and (a2) context matches (e.g., C = {}).

* More details: [Watkins & Dayan, 1992; Dudik et al., 2011; Jiang & Li, 2016].

2. OFF-POLICY LEARNING

3. DO-CALCULUS LEARNING*

- E[Y | do(X)] can be estimated from non-experimental data (also called *natural / behavioral regime*)
 - Pros: estimation is feasible even when context is unknown and experimental variables do not match (i.e., off-policy assumptions are violated).
 - Cons: Results are contingent on the model; for weak models, effect is not uniquely computable (not ID).

* For details, see data-fusion survey [Bareinboim & Pearl, PNAS'2016].

3. DO-CALCULUS LEARNING

* For a more general treatment, see (LCB, UAI'19)

SUMMARY RL-CAUSAL (CIRCA 2020)

IS LEARNING IN INTERACTIVE SYSTEMS ESSENTIALLY DONE? IF NOT, WHAT IS MISSING?

TOWARDS CAUSAL REINFORCEMENT LEARNING

CRL NEW CHALLENGES & LEARNING OPPORTUNITIES (I)

Task 1 (IJCAI'17, NeurIPS'19, ICML'20)

Generalized Policy Learning (combining online + offline learning)

Task 2 (NeurIPS'18, AAAI'19)

When and where to intervene?

(refining the policy space)

Task 3(NeurIPS'15, ICML'17)Counterfactual Decision-Making(changing optimization function based onintentionality, free will, and autonomy)

CRL NEW CHALLENGES & LEARNING OPPORTUNITIES (II)

Task 4 (NeurIPS'14, PNAS'16, UAI'19, AAAI'20)

Generalizability & robustness of causal claims (transportability & structural invariances)

ASK 5 (NeurIPS'17, ICML'18, NeurIPS'19)

Learning causal model by combining observations (L₁) and experiments (L₂)

Task 6(R-66 @CausalAI)Causal Imitation Learning

TASK 1. GENERALIZED POLICY LEARNING (Combining Online and Offline Learning)

TASK 1. GENERALIZED POLICY LEARNING (Combining Online and Offline Learning)

CRL-TASK 1. GENERALIZED POLICY LEARNING (GPL)

- Online learning is usually undesirable due to financial, technical, or ethical constraints. In general, one wants to leverage data collected under different conditions to speed up learning, without having to start from scratch.
- On the other hand, the conditions required by offline learning are not always satisfied in many practical, real world settings.
- In this task, we move towards realistic learning scenarios where these modalities come together, including when the most traditional, and provably necessary, assumptions do not hold.

- Robotics: learning by demonstration when the teacher Online can observe a richer context (e.g., more accurate sensors).
- Medical: optimal experimental design from observational data.

- Off-policy a₂

- Do-calc ID

Traditional TS means ignoring the observational data.

Traditional TS means ignoring the

observational data.

How could this be happening?! Could more data be hurting?

Traditional TS means ignoring the observational data.

39

Could more data be hurting?

Structural Explanation for Naive-TS's behavior -- The Challenge of Non-Identifiability

Structural Explanation for Naive-TS's behavior -- The Challenge of Non-Identifiability

Structural Explanation for Naive-TS's behavior -- The Challenge of Non-Identifiability

Structural Explanation for Naive-TS's behavior -- The Challenge of Non-Identifiability

SCM M (Unobserved)

Causal Graph G

Questions (more general):

1. How do I know this pattern is not present in my data? Don't know :(

- 2. Does this then imply that I should throw away all the data not collected by me (the agent) and learn from scratch? Hopefully not...
- 3. After all, is there any useful information in the obs. data? Yes!

Let's try to understand how to leverage confounded data...

X=0		0.1
X=1	0.36	0.39

Step 1. Extracting Causal Information from Confounded Observations

Solution: Bounding E[Y | do(x)] from observations P(x,y).

Theorem. Given observations coming from any distribution P(x,y), the average causal effect E[Y | do(x)] is bounded in $[I_x, h_x]$, where

 $I_x = E[Y | x] P(x)$ and $h_x = I_x + 1 - P(x)$.

- Linear Program formulation in other causal graphs (nonparametric SCMs): [Balke & Pearl, 1996; Zhang and Bareinboim, IJCAI'17]
- Incorporating parametric knowledge: [Kallus & Zhou, 2018; Namkoong et al., 2020]
- Sequential treatments in longitudinal settings: [Zhang & Bareinboim, NeurIPS'19; ICML'20]

Step 2. Incorporating Bounds into Learning (e.g., Causal Thompson Sampling)

```
Input: prior parameters \alpha, \beta,
                                                              /* [l<sub>x</sub>, h<sub>x</sub>] are
        causal bounds [I_x, h_x] for each arm x.
                                                              computed from
Initialization: S_x=0, F_x=0 for each arm x
                                                              confounded
                                                              observations */
For t = 1, ..., T do
         For each x do
            Repeat
                                                              /* Causal
                                                              bounds are
              Draw \theta_x \sim \text{Beta}(S_x + \alpha, F_x + \beta).
                                                              ascertained thr.
            Until θ<sub>x</sub> ε [l<sub>x</sub>, h<sub>x</sub>]
                                                              a rejection
         End
                                                              procedure. */
         Play do(x<sub>t</sub>) where X_t = argmax_x \theta_x.
         Observed Y_t and update F_{xt} and S_{xt}.
End
```


GENERALIZED POLICY LEARNING -- BIG PICTURE

GENERALIZED POLICY LEARNING -- BIG PICTURE

If policy is *identifiable* from offline methods, return optimal one through Do-calculus/IPW. 2. Extract causal information from obs. data, and compose causal bounds based on the available structural assumptions (on G & M). Offline + Online: Incorporate causal bounds into online allocation procedure.

obs

 $do(x_0) do(x_1) \dots do(x_0)$

NEW RESULT: GPL FOR DYNAMIC TREATMENT REGIMES

• DTRs is a popular model for sequential treatment in medical domains [Murphy, 2003; Moodie et al., 2007]:

NEW RESULT: GPL FOR DYNAMIC TREATMENT REGIMES

• DTRs is a popular model for sequential treatment in medical domains [Murphy, 2003; Moodie et al., 2007]:

* For details, see [Zhang & Bareinboim, NeurIPS'19; ICML'20].

TASK 2. WHEN AND WHERE TO INTERVENE? (Refining the policy space)

CRL-TASK 2. WHEN AND WHERE TO INTERVENE?

- In general, it's assumed throughout the literature a policy space such that actions are fixed a priori (e.g., a set $X = \{X_1, \dots, X_k\}$), and intervening is usually assumed to lead to positive outcomes.
- Our goal here is to understand when interventions when are required, or if they may lead to unintended consequences (e.g., side effects).
- In the case interventions may be needed, we would like to understand what should be changed in the where underlying environment so as to bring a desired state of affairs about (e.g., maybe $do(X_1, X_3, X_7)$) instead of $do(X_1, X_2, X_3, ..., X_7)$).

UNDERSTANDING THE POLICY SPACE

• Consider the causal graph of a bandit model:

 Our goal is to optimize Y (e.g., keep it high as much as possible), and we are not a priori committed to intervening on any specific variable, or intervening at all.

UNDERSTANDING THE POLICY SPACE

- Our goal is to optimize Y (e.g., keep it high as much as possible), and we are not a priori committed to intervening on any specific variable, or intervening at all.
- Consider now the 3-var causal graph:

causal graph G

policy space

{X, Z}

{Z}

 $\{X\}$

 Causal-insensitive strategy: Ignore the causal structure G, take {X, Z} as one larger variable, and search based on

$$\operatorname{argmax}_{xz} E[Y \mid \operatorname{do}(X = x, Z = z)]$$

Agent's model: ANDING THE POLICY SPACE Key observations:

ptimize Y (e we are not a

1. Note that the implicit causal graph in the agent's mind (G'), which follows from standard optimization procedure, variable, or is different than G.

the 3-var cal 2. The true causal model G encodes

causal graph G

constraints of the underlying environment (SCM M).

Question -- Despite what is in the agent's mind (or optimization function), it's still the case that it will be evaluated by the SCM M. Is then being oblivious to the pair <G, M> okay? Causal-insensitive strategy Can't we just do more interventions? take {X, Z} as one larger v Meaning, more do(X=x, Z=z), and

> things will eventually converge? $\operatorname{argmax}_{xz} E[Y | \operatorname{do}(X = x, Z = z)]$

SCM M (Unobserved)

 $Z \leftarrow U_z$ $X \leftarrow Z \oplus U$ $Y \leftarrow X \oplus U$ $P(U=1) = P(U_z=1) = 0.5$ Causal Graph G

POLICY SPACE (EXAMPLE)

Causal graph G	Intervention Sets (IS)	Actions
Z	{}	do()
X Y Policy space	do(X)	do(X=0) do(X=1)
{}	do(Z)	do(Z=0) do(Z=1)
{X} {Z} {X, Z}	do(X,Z)	do(X=0,Z=0) do(X=0,Z=1) do(X=1,Z=0) do(X=1,Z=1)

POLICY SPACE (EXAMPLE)

Causal graph G	Intervention Sets (IS)	Actions
Z	{}	do()
X Y Policy space	do(X)	do(X=0) do(X=1)
{} {}	do(Z)	do(Z=0) do(Z=1)
{X} {Z}	do(X,Z)	do(X=0,Z=0)
We'll study to the the to	properties of the p pological constrain	olicy space with respec its imposed by M in G.

PROPERTY 1: INTERVENTIONAL EQUIVALENCE

$E[Y \mid do(x,z)] = E[Y \mid do(x)]$ $\therefore (Y \perp Z \mid X) \text{ in } G_{\overline{X,Z}} \text{ (Rule 3 of do-calculus)}$

Implication: prefer playing do(X) to playing do(X, Z).

Definition (Minimal Intervention Set, MIS)

Given $\langle G, Y \rangle$, a set of variables $X \subseteq V \setminus \{Y\}$ is said to be a *minimal intervention set* if there is no $X' \subset X$ such that $E[Y \mid do(x')] = E[Y \mid do(x)]$ for every SCM conforming to *G* where x' is consistent with x.

PROPERTY 1: MIS (EXAMPLE)

Causal graph G	Intervention Sets (IS)	Actions	MIS
Z	{}	do()	
X Y Policy space	do(X)	do(X=0) do(X=1)	
{}	do(Z)	do(Z=0) do(Z=1)	
{X} {Z} {X, Z}	do(X,Z)	do(X=0,Z=0) do(X=0,Z=1) do(X=1,Z=0) do(X=1,Z=1)	

PROPERTY 1: MIS (EXAMPLE)

Causal graph G	Intervention Sets (IS)	Actions	MIS
Z	{}	do()	~
X Y Policy space	do(X)	do(X=0) do(X=1)	~
{}	do(Z)	do(Z=0) do(Z=1)	~
{X} {Z} {X, Z}	do(X,Z)	do(X=0,Z=0) do(X=0,Z=1) do(X=1,Z=0) do(X=1,Z=1)	X

PROPERTY 2: PARTIAL-ORDEREDNESS

 $E[Y] = \sum_{z} E[Y|do(z)] P(z)$

 $\leq \sum_{z} E[Y|do(z^*)] P(z)$

 $= E[Y|do(z^*)] \qquad z^* \equiv \operatorname{argmax}_z E[Y|do(z)]$

 $\therefore E[Y] \le E[Y|do(z^*)]$

Implication: playing do(Z) should be preferred to playing do().

Definition (Possibly-Optimal MIS, POMIS)

Given $\langle G, Y \rangle$, let $X \in MISs$. X is said to be a possibly-optimal MIS if there exists a SCM M conforming to G such that

 $\max_{\mathbf{x}} E[Y \mid do(\mathbf{X}=\mathbf{x})] > \max_{\mathbf{W} \in MIS \setminus {\mathbf{X}}} E[Y \mid do(\mathbf{W}=\mathbf{w})]$

PROPERTY 2: PARTIAL-ORDEREDNESS

PROPERTY 2: POMIS (EXAMPLE)

Causal graph G	intervention sets	actions	MIS	POMIS
Z	{}	do()	V	
X Y	do(X)	do(X=0) do(X=1)	~	
Policy space	do(Z)	do(Z=0) do(Z=1)	~	
{X} {Z} {X, Z}	do(X,Z)	do(X=0,Z=0) do(X=0,Z=1) do(X=1,Z=0) do(X=1,Z=1)	X	

PROPERTY 2: POMIS (EXAMPLE)

Causal graph G	intervention sets	actions	MIS	POMIS
ZU	{}	do()	~	×
X Y	do(X)	do(X=0) do(X=1)	~	~
Policy space	do(Z)	do(Z=0) do(Z=1)	~	~
{X} {Z} {X, Z}	do(X,Z)	do(X=0,Z=0) do(X=0,Z=1) do(X=1,Z=0) do(X=1,Z=1)	X	X

PROPERTY 2: POMIS (EXAMPLE)

Causal g	graph G	intervention sets	actions	MIS	POMIS
Z	, U	{}	do()	~	×
X	```````````````````````````````````	do(X)	do(X=0) do(X=1)	~	~
Policy s	space	do(Z)	do(Z=0) do(Z=1)	~	~
{X}		do(Y 7)	$d_{0}(Y=0, 7=0)$		
{X,	POMIS 8	share the rev & POMIS' arm	ward mechani Is are depend	sm (So ent.	CM)

PROPERTY 3: ARMS' QUANTITATIVE RELATIONSHIPS

- Goal: infer an arm's expected reward from other arms' data, $P(y|do(\mathbf{x})) \leftarrow \{ P(\mathbf{V} \mid do(\mathbf{Z})) \}_{Z \in \mathbf{POMIS} \setminus \{\mathbf{x}\}}$
- New ID algorithm (z²ID) to find a matching POMIS, that can borrow some additional data.

<u>Example</u>

Given POMISs {}, {B}, and {C}:

 $P(y) = \sum_{a,b,c} P_b(c|a) P_c(a,b,y)$

 $\overline{P_b(y)} = \sum_{a,c} P(c|a,b) \sum_{b'} P(y|a,b',c) P(a,b')$

 $P_c(y) = \sum_{a,b} P(y|a, b, c) P(a, b)$

 $P_c(y) = \sum_a P_b(y|a, c) P_b(a)$

PROPERTY 3: ARMS' QUANTITATIVE RELATIONSHIPS

• Make the most of data — Minimum Variance Weighting

WHEN AND WHERE TO INTERVENE --ALGORITHMS & EXPERIMENTS

- We embed these results into TS/UCB solvers:
 - z²-TS: posterior distributions for expected rewards → adjust 'posterior distributions' reflecting all used data
 - z²-kl-UCB: upper confidence bounds for expected rewards → adjust 'upper bounds' by taking account samples from other arms
- Performance: POMIS+ ≥ POMIS ≥ MIS ≥ Brute-force

WHEN & WHERE TO INTERVENE --BIG PICTURE

NEW RESULT: WHERE TO INTERVENE & WHAT TO SEE

 In addition to deciding where to intervene, agents also need to decide where to look...

WHERE TO INTERVENE & WHAT TO SEE — POLICY SPACE

{}	{X ₂ }			
do()	do(x ₂)	$do(x_2 c)$	$do(x_2 x_1)$	$do(x_2 c,x_1)$
{X ₁ }	{X ₁ , X ₂ }			
do(x1)	do(x1), do(x2)	do(x ₁), do(x ₂ c)	do(x1), do(x2 x1)	do(x ₁), do(x ₂ c,x ₁)
do(x ₁ c)	do(x ₁ c), do(x ₂)	$do(x_1 c), do(x_2 c)$	$do(x_1 c), do(x_2 x_1)$	do(x ₁ c), do(x ₂ c,x ₁)

WHERE TO INTERVENE & WHAT TO SEE — POLICY SPACE

Policies with the same maximum expected rewards

$d_{O}()$ $d_{O}(x_{i})$	do(x ₂)			
dO() dO(X ₁)	$do(x_1),$ $do(x_2)$	do(x ₂ x ₁)	do(x ₂ c)	do(x ₂ c,x ₁)
	$do(x_1 c), do(x_2)$		do(x1), do(x2 c)	do(x ₁), do(x ₂ c,x ₁)
do(x ₁ c)	do(x ₁), do(x ₂ x ₁)	$do(x_1 c), do(x_2 x_1)$	do(x ₁ c), do(x ₂ c)	do(x ₁ c), do(x ₂ c,x ₁)
WHERE TO INTERVENE & WHAT TO SEE — POLICY SPACE

1. minimal policy among reward-equivalent policies

$do()$ $do(x_1)$	do(x ₂)			
	$do(x_1),$	do(x ₂ x ₁)	do(x ₂ c)	do(x2 c,x1)
	$do(x_2)$ $do(x_1 c),$ $do(x_2)$		do(x ₁), do(x ₂ c)	do(x1), do(x2 c,x1)
do(x ₁ c)	do(x ₁), do(x ₂ x ₁)	$do(x_1 c), do(x_2 x_1)$	do(x ₁ c), do(x ₂ c)	do(x ₁ c), do(x ₂ c,x ₁)

WHERE TO INTERVENE & WHAT TO SEE — POLICY SPACE

1. minimal policy among

Partial-orders among policies wrt maximum expected rewards

WHERE TO INTERVENE & WHAT TO SEE — POLICY SPACE

* For details, see [R-63 @CausalAI].

TASK 3. COUNTERFACTUAL DECISION-MAKING (Intentionality, Free Will, Autonomy)

Andrew Forney

Judea Pearl

CRL-TASK 3. COUNTERFACTUAL DECISION-MAKING

- Agents act in a reflexive manner, without considering the reasons (or causes) for behaving in a particular way. Whenever this is the case, they can be exploited without never realizing.
- This is a general phenomenon in online learning whenever the agent optimizes by Fisherian rand./ the do-distribution (incl. all known RL settings).
- Our goal is to endow agents with the capability of performing counterfactual reasoning (taking their own intent into account), which leads to a more refined notion of regret & a new OPT function.

Question:

How should one select the treatment (x*) to a particular unit U=u so as to maximize expected reward (Y)?

What if we have observational data? Experimental data?

Applications:

» Robotics
» Medical Treatment
» Job Training Program

Goal: Find a strategy (\Box) so as to minimize cumulative regret.

X = type of the machine (x_0, x_1) Y = reward (y_0, y_1)

- $B = blinking machine (b_0, b_1)$
- $D = drunkenness level (d_0, d_1)$
- Regulations: payout has to be \geq 0.3.
- Casino learns how customers operates and decides to set the payout structure as follows (using ML):

E [y ₁] D = 0		D = 1		
X, B, D]	B = 0	B = 1	B = 0	B = 1
$X = x_1$	0.10	0.50	0.40	0.20
$X = x_0$	0.50	0.10	0.20	0.40

Casino's model: f_X(B, D), P(B), P(D),

E [y ₁	D = 0		D = 1	
X, B, D]	B=0	B = 1	B = 0	B = 1
$X = x_1$	0.10	0.50	0.40	0.20
$X = x_0$	0.50	0.10	0.20	0.40

Casino's model: f_X(B, D), P(B), P(D),

E [y ₁]	D = 0		D = 1	
X, B, D]	B=0	B = 1	B = 0	B = 1
$X = x_1$	0.10	0.50	0.40	0.20
$X = x_0$	0.50	0.10	0.20	0.40

Attempt 1. ML (e-greedy, Thompson Sampling, UCB, EXP3).

* Bandits minimize short-term regret based on the do()-distribution.

- Attempt 2. Counterfactual randomization
- RDC (Regret Decision Criterion):

 $X^* = \arg \max_{x} E(Y_{X = x_1} | X = x_0)$

 $X^* = \arg \max_x E(Y \mid do(X = x))$

This should be read as the counterfactual sentence:
 "Expected value of Y had X been x₁, given that X = x₀?"

(Also known as Effect of Treatment on the Treated.)

- Attempt 2. Counterfactual randomization *Also called
- RDC (Regret Decision Criterion):
 counterfactual, but too weak (L₂), we'll

 $X^* = \arg \max_{x} E(Y_{X=x_1} | X = x_0)$ just call do().

 $X^* = \arg \max_{x} E(Y \mid do(X = x)) = E(Y_{X = x})$

This should be read as the counterfactual sentence:

"Expected value of Y had X been x_1 , given that $X = x_0$?" (Also known as Effect of Treatment on the Treated.)

- Attempt 2. Counterfactual randomization
- RDC (Regret Decision Criterion):

 $X^* = \arg \max_{x} E(Y_{X = x_1} | X = x_0)$

- This should be read as the counterfactual sentence:
 "Expected value of Y had X been x₁, given that X = x₀?" (Also known as Effect of Treatment on the Treated.)
- General counterfactuals are difficult (or impossible) to evaluate from data (even experimentally), except for some special conditions (e.g., binary treatment, backdoor admissibility, unconfoundedness) (Pearl, 2000, Ch. 9).

• RDC (Regret Decision Criterion):

 $X^* = \operatorname{argmax}_X E(Y_{X = x_1} \mid X = x_0)$

• Evaluating RDC-type expressions:

- Note that the agent is about to play machine x_0 , which means that (the unknown) $f_X(b, d)$ evaluated to x_0 .

• RDC (Regret Decision Criterion):

 $X^* = \operatorname{argmax}_X E(Y_{X = x_1} \mid X = x_0)$

• Evaluating RDC-type expressions:

- Note that the agent is about to play machine x_0 , which means that (the unknown) $f_X(b, d)$ evaluated to x_0 .

Pause, interrupting decision flow, and wonder:

"I am about to play x_0 , would I be better off going with my intuition (x_0) or against it (x_1)?"

• RDC (Regret Decision Criterion):

 $X^* = \operatorname{argmax}_X E(Y_{X = x_1} \mid X = x_0)$

• Evaluating RDC-type expressions:

- Note that the agent is about to play machine x_0 , which means that (the unknown) $f_X(b, d)$ evaluated to x_0 .

Pause, interrupting decision flow, and wonder:

"I am about to play x_0 , would I be better off going with my intuition (x_0) or against it (x_1)?"

 $X^* = \operatorname{argmax}_X E(Y_{X = x_1} \mid X = x_0)$

• Evaluating RDC-type expressions:

- Note that the agent is about to play machine x_0 , which means that (the unknown) $f_X(b, d)$ evaluated to x_0 .

Pause, interrupting decision flow, and wonder:

"I am about to play x_0 , would I be better off going with my intuition (x_0) or against it (x_1)?"

Note. If at step 2, we ...

• do not interrupt, allowing $X = x_0 \rightarrow P(x_0, y)$.

 $X^* = \operatorname{argmax}_X E(Y_{X = x_1} \mid X = x_0)$

• Evaluating RDC-type expressions:

- Note that the agent is about to play machine x_0 , which means that (the unknown) $f_X(b, d)$ evaluated to x_0 .

Pause, interrupting decision flow, and wonder:

"I am about to play x_0 , would I be better off going with my intuition (x_0) or against it (x_1)?"

- do not interrupt, allowing $X = x_0 \rightarrow P(x_0, y)$.
- do interrupt and make $X = rand() = x_1 \rightarrow P(y | do(x_1))$.

 $X^* = \operatorname{argmax}_X E(Y_{X = x_1} \mid X = x_0)$

• Evaluating RDC-type expressions:

- Note that the agent is about to play machine x_0 , which means that (the unknown) $f_X(b, d)$ evaluated to x_0 .

Pause, interrupting decision flow, and wonder:

"I am about to play x_0 , would I be better off going with my intuition (x_0) or against it (x_1)?"

- do not interrupt, allowing $X = x_0 \rightarrow P(x_0, y)$.
- do interrupt and make $X = rand() = x_1 \rightarrow P(y | do(x_1))$.

 $X^* = \operatorname{argmax}_X E(Y_{X = x_1} \mid X = x_0)$

• Evaluating RDC-type expressions:

- Note that the agent is about to play machine x_0 , which means that (the unknown) $f_X(b, d)$ evaluated to x_0 .

Pause, interrupting decision flow, and wonder:

"I am about to play x_0 , would I be better off going with my intuition (x_0) or against it (x_1)?"

- do not interrupt, allowing $X = x_0 \rightarrow P(x_0, y)$.
- do interrupt and make $X = rand() = x_1 \rightarrow P(y | do(x_1))$.
- do interrupt and make $X = rand() = x_1 | x_0 \rightarrow P(Y_{x_1} | x_0)$.

 $X^* = \operatorname{argmax}_X E(Y_{X = x_1} \mid X = x_0)$

• Evaluating RDC-type expressions:

- Note that the agent is about to play machine x_0 , which means that (the unknown) $f_X(b, d)$ evaluated to x_0 .

Pause, interrupting decision flow, and wonder:

"I am about to play x_0 , would I be better off going with my intuition (x_0) or against it (x_1)?"

- do not interrupt, allowing $X = x_0 \rightarrow P(x_0, y)$. EDT
- do interrupt and make $X = rand() = x_1 \rightarrow P(y \mid do(x_1))$. CDT
- do interrupt and make X = rand() = $x_1 | x_0 \rightarrow P(Y_{x_1} | x_0)$. RDT

REGRET DECISION CRITERION: EXPERIMENTAL RESULTS

Greedy Casino Parametrization

REGRET DECISION CRITERION: EXPERIMENTAL RESULTS

• What if the experimental distribution is available (4-arm case)?

TASK 3. COUNTERFACTUAL LEARNING

APPLICATION: HUMAN-AI COLLABORATION (CAN HUMANS BE OUT OF THE LOOP?*)

- Observation from the RDC, if E[Y_x|x'] = E[Y|do(x)] → the human's intuition has no value of information.
- In words, the human expert could be replaced without sacrificing the performance of the system, at least in principle full autonomy can be achieved.
- Contribution: New Markovian properties (L₂, L₃) that establishes whether an agent can be autonomous.

Env. Model	Optimality		Autonomy
Env. Model	A_{exp}	A_{ctf}	Autonomy
MDPUC ⁻	1	1	 ✓
MDPUC	X	1	×
MDPUC ⁺	X	1	×
DSCM ⁻	1	1	1
DSCM	X	1	×

* For details, see [R-64 @CausalAI].

APPLICATION: HUMAN-AI COLLABORATION (CAN HUMANS BE OUT OF THE LOOP?*)

- Observation from the RDC, if E[Y_x|x'] = E[Y|do(x)] → the human's intuition has no value of information
- In words, the human expert could sacrificing the performance of the principle full autonomy can be acl
- Contribution: New Markovian project establishes whether an agent car

Env. Model	Optimality		Autonomy
	A_{exp}	$ A_{ctf} $	Autonomy
MDPUC ⁻			
MDPUC	X	1	×
MDPUC ⁺	X	1	X
DSCM ⁻	1	1	✓
DSCM	X	1	×

* For details, see [R-64 @CausalAI].

SUMMARY CRL TASKS

CRL CAPABILITIES (I)

1. Generalized Policy Learning (on+offline)

- Online learning is too costly and learning from scratch is usually impractical. Still, the assumptions of offline learning are rarely satisfied in practice.
- Goal: Move towards more realistic learning scenarios where the two modalities come together, extracting as much causal information as possible from confounded data, and using it in the most efficient way.

2. When and where to intervene?

- Agents usually have a fixed policy space (actions), and intervening is usually assumed as beneficial.
- Goal: Understand when interventions are needed and whenever this is the case, what should be changed in the system to bring about the desired outcome.

CRL CAPABILITIES (II)

3. Counterfactual Decision-Making (intentionality, regret & free will)

- Agents act in a reflexive manner, without considering the reasons (causes) for behaving in a certain way.
- Goal: Endow agents with the capability of taken their own intent into account, which will lead to a new notion of regret based on counterfactual randomization.
- 4. Generalizable and Robust Decision-Making (transportability & structural invariances)
 - The knowledge acquired by an agent is usually circumscribed to the domain where it was deployed.
 - Goal: Allow agents to extrapolate knowledge, making more robust and generalizable claims by leveraging the causal invariances shared across environments.

CRL CAPABILITIES (III)

- 5. Learning Causal Models by Combining **Observations & Experimentation**
 - Agents have a fixed causal model, constructed from templates or from background knowledge.
 - Goal: Allow agents to systematically combine the observations and interventions it's already collecting to construct an equivalence class of causal models.

6. Causal Imitation Learning

- Mimicking is one of the common ways of learning. Whenever the demonstrator has a different causal model, imitating may lead to disastrous side effects.
- Goal: Understand the conditions so that imitation by behavioral cloning is valid and leads to faster learning. Otherwise, introduce more refined imitation modalities.

CRL (CHEAT SHEET)

- 1. Generalized Policy Learning (on+offline) Combining $L_1 + L_2$ interactions to learn policy \square .
- 2. When and where to intervene? Identifying subset of L₂ and optimize the policy space.
- 3. Counterfactual Decision-Making Optimization function based on L₃ counterfactual & random.
 - 4. Generalizability and Robustness Generalizing from training environment (SCM M) to SCM M*.
 - 5. Learning Causal Model G
 - Combining $L_1 + L_2$ interactions to learn G (of M).
 - 6. Causal Imitation Learning Learning L₂-policy based on partially observable L₁-data (expert).

behavioral cloning is valid and leads to faster learning. Otherwise, introduce more refined imitation modalities.

CONCLUSIONS

- CI & RL are fundamentally intertwined and novel learning opportunities emerge when this connection is fully realized.
 - The structural invariances encoded in the causal graph (w.r.t. SCM *M*) can be leveraged and combined with RL allocation procedures leading to robust learning.
 - Still, failure to acknowledge distinct invariances of the environment (*M*) almost always leads to poor decision-making.

• CRL opens up a new family of learning problems that were neither acknowledged nor understood before, including the combination of online & offline learning (GPL), when/where to intervene, counterfactual decision-making, generalizability across environments, to cite a few.

• Program: Develop a principled framework for designing causal AI systems integrating [observational, experimental, counterfactual] data, modes of reasoning, knowledge.

• Leads to a natural treatment to human-like explainability and rational decision-making.

CONCLUSIONS

 CI & RL are fundamentally intertwined and novel learning opportunities emerge when this connection is fully realized.

- The structural invariances encoded in the causal graph (w.r.t. SCM *M*) can be leveraged and combined with RL allocation procedures leading to robust learning.
- Still, failure to acknowledge distinct invariances of the environment (M) almost always leads to poor decision-making.

Pre nei Resources: https://crl.causalai.net CO intervene, counterractual decision-making, generalizabili across environments, to cite a few.

 Program: Develop a principled framework for designing causal AI systems integrating [observational, experimental, counterfactual] data, modes of reasoning, knowledge. THANK

 Leads to a natural treatment to human-like explainability and rational decision-making.

REFERENCES

[F 1935] Fisher, R. A. *The Design of Experiments*. Oliver and Boyd 1935.

[WD 1992] Watkins, C., Dayan, P. *Q-Learning.* Machine Learning volume 8. 1992.

[BP 1994] Balke, A., Pearl, J. *Counterfactual Probabilities: Computational Methods, Bounds, and Applications* In Proceedings of the Conference on Uncertainty in Artificial Intelligence 1994.

[SB 1998] R. Sutton, A. Barto. *Reinforcement Learning: An Introduction*. MIT Press, 1998.

[P 2000] J. Pearl. *Causality: Models, Reasoning, and Inference*. Cambridge Press, 2000.

[ACF 2002] Auer, P., Cesa-Bianchi, N., Fischer, P. *Finite-time Analysis of the Multiarmed Bandit Problem* Machine Learning volume 47. 2002.

[JOA 2010] Jaksch, T., Ortner, R., Auer, P. *Near-optimal Regret Bounds for Reinforcement Learning*. Journal of Machine Learning Research 11. 2010.

[DLL 2011] Dudik, M., Langford, J., Li, L. *Doubly robust policy evaluation and learning*. In Proceedings of 28th International Conference on Machine Learning. 2011.

[BP 2014] E. Bareinboim, J. Pearl. *Transportability from Multiple Environments with Limited Experiments: Completeness Results.* In Proceedings of the 27th Annual Conference on Neural Information Processing Systems, 2014.

REFERENCES

[BFP 2015] E. Bareinboim, A. Forney, J. Pearl. *Bandits with Unobserved Confounders: A Causal Approach.* In Proceedings of the 28th Annual Conference on Neural Information Processing Systems, 2015.

[BP 2016] E. Bareinboim, J. Pearl. *Causal inference and the data-fusion problem.* Proceedings of the National Academy of Sciences, v. 113 (27), pp. 7345-7352, 2016.

[JL 2016] Jiang, N., Li, L. *Doubly robust off-policy value evaluation for reinforcement learning*. In Proceedings of the 33rd International Conference on Machine Learning. 2016.

[ZB 2016] J. Zhang, E. Bareinboim. *Markov Decision Processes with Unobserved Confounders: A Causal Approach.* CausalAI Lab, Technical Report (R-23), 2016.

[FPB 2017] A. Forney, J. Pearl, E. Bareinboim. *Counterfactual Data-Fusion for Online Reinforcement Learners.* In Proceedings of the 34th International Conference on Machine Learning, 2017.

[KSB 2017] M. Kocaoglu, K. Shanmugam, E. Bareinboim. *Experimental Design for Learning Causal Graphs with Latent Variables.* In Proceedings of the 31st Annual Conference on Neural Information Processing Systems, 2017.

[ZB 2017] J. Zhang, E. Bareinboim. *Transfer Learning in Multi-Armed Bandits: A Causal Approach.* In Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017.
REFERENCES

[GSKB 2018] Ghassami, A., Salehkaleybar, S., Kiyavash, N., Bareinboim, E. *Budgeted Experiment Design for Causal Structure Learning.* In Proceedings of the 35th International Conference on Machine Learning. 2018.

[KZ 2018] Kallus, N., Zhou, A. *Confounding-robust policy improvement.* In Advances in Neural Information Processing Systems 2018.

[LB 2018] S. Lee, E. Bareinboim. *Structural Causal Bandits: Where to Intervene?* In Proceedings of the 32nd Annual Conference on Neural Information Processing Systems, 2018.

[PM 2018] J. Pearl, D. Mackenzie. *The book of why: The new science of causal and effect*. Basic Books, 2018.

[FB 2019] A. Forney, E. Bareinboim. *Counterfactual Randomization: Rescuing Experimental Studies from Obscured Confounding.* In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019.

[KJSB 2019] Kocaoglu, M., Jaber, A., Shanmugam, K., Bareinboim, E. *Characterization and Learning of Causal Graphs with Latent Variables from Soft Interventions.* In Proceedings of the 33rd Annual Conference on Neural Information Processing Systems. 2019.

[LB 2019] S. Lee, E. Bareinboim. *Structural Causal Bandits with Non-manipulable Variables.* In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019.

REFERENCES

[LCB 2019] S. Lee, J. Correa, E. Bareinboim. *General Identifiability with Arbitrary Surrogate Experiments* In Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence, 2019.

[ZB 2019] Zhang, J., Bareinboim, E. *Near-Optimal Reinforcement Learning in Dynamic Treatment Regimes.* In Advances in Neural Information Processing Systems 2019.

[BCII 2020] Bareinboim, E, Correa, J, Ibeling, D, Icard, T. *On Pearl's Hierarchy and the Foundations of Causal Inference.* In "Probabilistic and Causal Inference: The Works of Judea Pearl" (ACM Special Turing Series). 2020.

[BLZ 2020] Bareinboim, E, Lee, S, Zhang, J. *An Introduction to Causal Reinforcement Learning.* Columbia CausalAI Laboratory, Technical Report (R-65). 2020.

[CB 2020] Correa, J, Bareinboim, E. *Transportability of Soft Effects: Completeness Results.* Columbia CausalAI Laboratory, Technical Report (R-68). 2020.

[JKSB 2020] Jaber, A, Kocaoglu, M, Shanmugam, K, Bareinboim, E. *Causal Discovery from Soft Interventions with Unknown Targets: Characterization & Learning.* Columbia CausalAl Laboratory, Technical Report (R-67). 2020.

[JTB 2020] Jung, Y, Tian, J, Bareinboim, E. *Learning Causal Effects via Empirical Risk Minimization.* Columbia CausalAI Laboratory, Technical Report (R-62). 2020.

REFERENCES

[LB 2020] Lee, S, Bareinboim, E. *Characterizing Optimal Mixed Policies: Where to Intervene, What to Observe.* Columbia CausalAl Laboratory, Technical Report (R-63). 2020.

[NKYB 2020] Namkoong, H., Keramati, R., Yadlowsky, S., Brunskill, E. *Off-policy Policy Evaluation For Sequential Decisions Under Unobserved Confounding.* arXiv:2003.05623. 2020.

[ZB 2020a] Zhang, J., Bareinboim, E. *Designing Optimal Dynamic Treatment Regimes: A Causal Reinforcement Learning Approach.* In Proceedings of the 37th International Conference on Machine Learning. 2020.

[ZB 2020b] Zhang, J, Bareinboim, E. *Bounding Causal Effects on Continuous Outcomes.* Columbia CausalAl Laboratory, Technical Report (R-61). 2020.

[ZB 2020c] Zhang, J, Bareinboim, E. *Can Humans Be Out of the Loop?* Columbia CausalAI Laboratory, Technical Report (R-64). 2020.

[ZKB 2020] Zhang, J, Kumor, D, Bareinboim, E. *Causal Imitation Learning with Unobserved Confounders.* Columbia CausalAI Laboratory, Technical Report (R-66). 2020.