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1. Explainability 
  (Effect identification  
  and decomposition,  
  Bias Analysis and 
  Fairness, Robustness   
  and Generalizability) 

CausalAI Lab

2. Decision-Making 
  

(Reinforcement Learning, 
 Randomized Controlled Trials,  
 Personalized Decision-Making) 

3. Applications, Education, Software 

Structural Causal Models  

Data Science: 
 Principled (“scientific”) inferences 
   from large data collections.  

AI-ML: 
Principles and tools for designing 
  robust and adaptable learning systems.
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What is Causal RL?

• Reinforcement Learning (RL) is awesome at handling 
sample complexity and credit assignment.

• Causal Inference (CI) is great at leveraging structural 
invariances across settings and conditions. 

• Can we have the best of both worlds? 
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Causal RL = CI + RL 

Yes!

Simple solution:

Our goal: Provide a cohesive framework that takes advantage        
of the capabilities of both formalisms (from first principles), and    

that allows us to develop the next generation of AI systems.



Outline

• Part 1. Foundations of CRL
• Intro to Structural Causal Models, Pearl Causal 

Hierarchy (PCH), Causal Hierarchy Theorem (CHT)
• Current RL & CI methods through CRL Lens

• Part 2. New Challenges and Opportunities of  
 Causal Reinforcement Learning

Goal: Introduce the main ideas, principles, and tasks.

For a more detailed discussion, see: NeurIPS’15, 
PNAS’16, ICML’17, IJCAI’17, NeurIPS-18, AAAI-19,    
UAI-19, NeurIPS-19, ICML-20 …  + new CRL survey. 

 Not focused on the implementation details.
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Resources: https://crl.causalai.net

https://crl.causalai.net
https://crl.causalai.net


PRELUDE:  
REINFORCEMENT  LEARNING
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What’s Reinforcement Learning?

• Goal-oriented learning -- how to 
maximize a numerical reward signal. 

• Learning about, from, and while 
interacting with an external environment.

• Adaptive learning -- each action is 
tailored for the evolving covariates and 
actions’ history.
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(Learning without having a full specification of 
the system; versus planning/programming)



RL - Big Picture

Agent 
Θ, G

Environment 

context / state

action

reward
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Parameters 
about the env.
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Parameters 
about the env.

• Receive feedback in the form of rewards. 
• Agent’s utility is defined by the reward function. 
• Must (learn to) act so as to maximize expected rewards.
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Agent 
Θ, G

Environment 
M

context / state

action

reward

Causal Graph Structural Causal Model
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Causal RL - Big Picture
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11
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Causal RL - Big Picture          Two key observations (RL → CRL):   
1. The environment and the agent will be  
    tied thr. the pair SCM M & causal graph G. 
2. We’ll define different types of “actions”, or 
    interactions, to avoid ambiguity (PCH).
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Causal RL - Big Picture          Two key observations (RL → CRL):   
1. The environment and the agent will be  
    tied thr. the pair SCM M & causal graph G. 
2. We’ll define different types of “actions”, or 
    interactions, to avoid ambiguity (PCH).

           Let’s define and understand  
      (1) the pair <M, G>, and (2) the PCH.



STRUCTURAL CAUSAL MODELS 
 & CAUSAL GRAPHS 
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             Drug  ← fD (Age, UD)
    Headache  ← fH(Drug, Age, UH)

• Processes 

G =  

X 
(Drug)

Y 
 (Headache)

Z (Age)

P(Z, X, Y)
(observational) 

SCM -- REPRESENTING    
THE DATA GENERATING MODEL
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∏(Age)

σ-calculus (Correa  
& Bareinboim 2020)



             Drug  ← fD (Age, UD)
    Headache  ← fH(Drug, Age, UH)

• Processes 
             Drug  ← Yes
    Headache  ← fH (Drug, Age, UH)

G =  

X 
(Drug)

Y 
 (Headache)

Z (Age)

P(Z, X, Y)

• Intervention 

(observational) 

SCM -- REPRESENTING    
THE DATA GENERATING MODEL

13

∏(Age)



             Drug  ← fD (Age, UD)
    Headache  ← fH(Drug, Age, UH)

• Processes 
             Drug  ← Yes
    Headache  ← fH (Drug, Age, UH)

G =  

X 
(Drug)

Y 
 (Headache)

Z (Age)

P(Z, X, Y)

• Intervention 

(observational) 

SCM -- REPRESENTING    
THE DATA GENERATING MODEL

13



             Drug  ← fD (Age, UD)
    Headache  ← fH(Drug, Age, UH)

• Processes 
             Drug  ← Yes
    Headache  ← fH (Drug, Age, UH)

G =  

X 
(Drug)

Y 
 (Headache)

Z (Age)

P(Z, X, Y)

Gdo(X) =  

X 
(Drug)

Y 
 (Headache)

Z (Age)

P(Z, Y | do(X = Yes))

Yes

• Intervention 

(observational) (interventional) 
P(Zx=yes, Yx=yes) =  

  

(counterfactuals)

SCM -- REPRESENTING    
THE DATA GENERATING MODEL

13



             Drug  ← fD (Age, UD)
    Headache  ← fH(Drug, Age, UH)

• Processes 
             Drug  ← Yes
    Headache  ← fH (Drug, Age, UH)

G =  

X 
(Drug)

Y 
 (Headache)

Z (Age)

P(Z, X, Y)

Gdo(X) =  

X 
(Drug)

Y 
 (Headache)

Z (Age)

P(Z, Y | do(X = Yes))

Yes

• Intervention 

(observational) (interventional) 

SCM -- REPRESENTING    
THE DATA GENERATING MODEL

13



             Drug  ← fD (Age, UD)
    Headache  ← fH(Drug, Age, UH)

• Processes 
             Drug  ← Yes
    Headache  ← fH (Drug, Age, UH)

G =  

X 
(Drug)

Y 
 (Headache)

Z (Age)

P(Z, X, Y)

Gdo(X) =  

X 
(Drug)

Y 
 (Headache)

Z (Age)

P(Z, Y | do(X = Yes))

Yes

• Intervention 

(observational) (interventional) 

SCM -- REPRESENTING    
THE DATA GENERATING MODEL

Decision Outcome

Features

13



• Processes 

G =  

X 
(Drug)

Y 
 (Headache)

Z (Age)

P(Z, X, Y)

Gdo(X) =  

X 
(Drug)

Y 
 (Headache)

Z (Age)

P(Z, Y | do(X = Yes))

Yes

• Intervention 

(observational) (interventional) 

SCM -- REPRESENTING    
THE DATA GENERATING MODEL

             Drug  ← fD (Age, UD) 
    Headache  ← fH(Drug, Age, UH)

             Drug  ← Yes 
    Headache  ← fH (Drug, Age, UH)

Decision Outcome

Features

14



• Processes 

G =  

X 
(Drug)

Y 
 (Headache)

Z (Age)

P(Z, X, Y)

Gdo(X) =  

X 
(Drug)

Y 
 (Headache)

Z (Age)

P(Z, Y | do(X = Yes))

Yes

• Intervention 

(observational) (interventional) 

SCM -- REPRESENTING    
THE DATA GENERATING MODEL

Seeing Doing 

             Drug  ← fD (Age, UD) 
    Headache  ← fH(Drug, Age, UH)

             Drug  ← Yes 
    Headache  ← fH (Drug, Age, UH)

Decision Outcome

Features

14



STRUCTURAL CAUSAL MODELS

Definition:  A structural causal model M (or, data 
generating model) is a tuple (V, U, F, P(u)), where

•   V = {V1,...,Vn} are endogenous variables,
•   U = {U1,...,Um} are exogenous variables,

•   F = {f1,..., fn} are functions determining V,                   
     for each Vi, Vi ← fi(Pai, Ui), where Pai

 ⊂ V, Ui ⊂ U. 
•   P(u) is a distribution over U.

(Axiomatic characterization [Halpern, Galles, Pearl, 1998].)
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Prop. SCM M implies Pearl Causal Hierarchy (PCH). 



PEARL CAUSAL HIERARCHY (PCH) 
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PEARL CAUSAL HIERARCHY (PCH) 
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(LADDER OF CAUSATION) 



SCM → PEARL CAUSAL HIERARCHY (PCH) 

Layer (Symbol)
Typical  
Activity

Typical  
 Question

Examples

L1 Associational 
 P(y | x) 

Seeing What is? 
How would 
seeing X change 
my belief in Y? 

What does a 
symptom tell us 
about the 
disease?

L2 Interventional 
 P(y | do(x), c)

Doing What if? 
What if I do X? 

What if I take 
aspirin, will my 
headache be 
cured?

L3 Counterfactual 
P(yx | x’, y’) 

Imagination, 
Introspection

Why?  
What if I had 
acted differently?

Was it the 
aspirin that 
stopped my 
headache?

ML - (Un)Supervised

ML - Reinforcement

 DT, Bayes net,  
Regression, NN

Causal BN, MDP

Structural Causal Model
!

"

#
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#

more  
detailed

less  
detailed

description of environm
ent

              L1 L2 L3
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L1 L2 L3 L1,L2,L3

collapse

CAUSAL HIERARCHY THEOREM
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[Bareinboim, Correa, Ibeling, Icard, 2020]

Informally, for almost any SCM (i.e., almost any possible 
environment), the PCH does not collapse, i.e., the layers 
of the hierarchy remains distinct. 

Corollary. To answer question at Layer i (about a certain 
interaction), one needs knowledge at layer i or higher. 

 
 
 
 
 
 

Theorem (CHT). With respect to Lebesgue measure  
over (a suitable encoding of L3-equivalence classes     
of) SCMs, the subset in which any PCH ‘collapse’ is 
measure zero.

Given that an SCM M → PCH, we can show the following: 

L L



WHY IS CAUSAL INFERENCE “NON-TRIVIAL”? 
SCMs ARE ALMOST NEVER OBSERVED

20
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X ← fx(Uy)  
    Y ← fy(X, Uy) 

P(Ux, Uy) 

P(y, x) P(y | do(x)) P(yx | x’, y’)

Exceptions:    
- Physics  
- Chemistry 
- Biology

L1 L2 L3

SCM M
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WHY IS CAUSAL INFERENCE “NON-TRIVIAL”? 
SCMs ARE ALMOST NEVER OBSERVED

20

X ← fx(Uy)  
    Y ← fy(X, Uy) 

P(Ux, Uy) 

P(y, x) P(y | do(x)) P(yx | x’, y’)

Unobserved  
Environment

Interactions 
/ Views

Seeing Doing

L1 L2 L3

SCM M



ENCODING STRUCTURAL CONSTRAINTS    
— CLASSES OF CAUSAL GRAPHS
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X ← fx(Uy)  
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ENCODING STRUCTURAL CONSTRAINTS    
— CLASSES OF CAUSAL GRAPHS

21

X ← fx(Uy)  
    Y ← fy(X, Uy) 

P(Ux, Uy) 

P(y, x) P(y | do(x)) P(yx | x’, y’)

Seeing Doing

L1 L2 L3

Causal Graph G 
(Strucutral Constraints)

 1. Templates (MAB, MDP)

 2. Knowledge Engineering

 3. Causal Discovery

SCM M



KEY POINTS (SO FAR)
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• The environment (mechanisms) can be modeled as an SCM
• SCM M (specific environment) is rarely observable 

• Still, each SCM M can be probed through qualitatively different 
types of interactions (distributions) -- the PCH -- i.e.: 
! L1: Observational
! L2: Interventional  
! L3: Counterfactual

• CHT (Causal Hierarchy Thm.): For almost any SCM, lower 
layers (say, Li) underdetermines higher layers (Li+1). 
• This delimits what an agent can infer based on the different 

types of interactions (and data) it has with the environment; 
• For instance, from passively observing the environment (L1), 

it cannot infer how to act (L2).
• From intervening in the environment (L2), it can’t infer how 

things would have been had she acted differently  (L3).
• Causal Graph G is a surrogate of the invariances of the SCM M. 



CURRENT METHODS IN RL & CI 
THROUGH CRL LENS 
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REINFORCEMENT LEARNING 
AND CAUSAL INFERENCE

Goal:  Learn a policy ∏ s.t. sequence of actions ∏(.) =      
  (X1, X2…, Xn) maximizes reward E∏[Y | do(X)].
Current strategies found in the literature (circa 2020): 
   1. Online learning

• Agent performs experiments herself
• Input: experiments {(do(Xi), Yi)}; Learned: P(Y | do(X))

   2. Off-policy learning 
• Agent learns from other agents’ actions
• Input: samples {(do(Xi), Yi)}; Learned: P(Y | do(X))

   3. Do-calculus learning  
• Agent observes other agents acting
• Input: samples {(Xi, Yi)}, G; Learned:  P(Y | do(X))

(black-box)

24
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1. ONLINE LEARNING
• Finding x* is immediate once E[Y | do(X)] is learned. 
• E[Y | do(X)]  can be estimated through randomized 

experiments or adaptive strategies.
• Pros: Robust against unobserved confounders (UCs)
• Cons: Experiments can be expensive or impossible

X Y

U

Pre-randomization 
(passive world)

X Y

U 

∏ 

Post-randomization 
(active)

experiment 
following ∏

25
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25* More details: [Fisher, 1936; Auer et al., 2002; Jaksch et al., 2010; Lattimore et al., 2016].



1. ONLINE LEARNING

26

Pre-randomization 
world (passive)

under do(X)

Ex~π[Y | do(x)]

Agent

do(x0) do(x1) …     do(x0)

no data

X Y

U
Π

X Y

U

experiment 
following ∏

(interventional learning)

* Online learning can be improved thr. causal machinery [ZB, ICML’20].



•Model can be augmented to accommodate set of 
observed covariates C (also known as context); U is 
the set of (remaining) unobserved confounders (UCs).  

NOTE: COVARIATE-SPECIFIC  
CAUSAL EFFECTS  (CONTEXTUAL)

X Y

U 

C 

•Goal: learn a policy ∏(c) so as to optimize based on 
the c-specific causal effect, P(Y | do(X), C = c). 

»  Challenge:  
   high-dimensional C 

27

Deep learning

(decision) (reward)



• E[Y | do(X)] can be estimated through experiments 
conducted by other agents and different policies. 
• Pros: no experiments need to be conducted
• Cons: rely on assumptions that (a1) same variables 

were randomized and (a2) context matches (e.g., C = {}). 

(a)
X Y

U 

∏’

(b)
X Y

U 

∏

2. OFF-POLICY LEARNING

IPW 
∏’ → ∏

28* More details: [Watkins & Dayan, 1992; Dudik et al., 2011; Jiang & Li, 2016].



2. OFF-POLICY LEARNING

29

under do(X) under do(X)
X Y

U
Π’

X Y

U
Π

Ex~π’[Y | do(x)]    Ex~π[Y | do(x)]

AgentOther agent with π’
IPW

do(x0) do(x1) …     do(x0)

A lot of work here  
since the variance 
 may blow up… 

PΠ(y |do(x)) = ∑
x,c

PΠ′ (y, x, c) PΠ(x |c)
PΠ′ (x |c)

PΠ(y |do(x)) = P′ Π′ (x, y) PΠ(x)
PΠ′ (x)PΠ(y |do(x)) = P′ Π′ (x, y) PΠ(x |c)

PΠ′ (x |c)



• E[Y | do(X)]  can be estimated from non-experimental 
data (also called natural / behavioral regime)
• Pros: estimation is feasible even when context is unknown 

and experimental variables do not match (i.e., off-policy 
assumptions are violated).

• Cons: Results are contingent on the model; for weak 
models, effect is not uniquely computable (not ID). 

3. DO-CALCULUS LEARNING *

X Y

U 

Z 
Passive-world 
data-collection

Do-world 
(Post-interventional) 

do-calc 
inference

* For details, see data-fusion survey [Bareinboim & Pearl, PNAS’2016]. 30

Z X Y

U 
∏ 



3. DO-CALCULUS LEARNING 

31

Causal Graph G under hypothetical  
do(X)

X Y

U
Π

X
Y

U

ΖΖ

P(Z,X,Y)     Ex~π[Y | do(x)]

AgentObservation
do-calc 

inference 
engine

obs, obs, …            obs
do(z), obs …           do(w)

ΣzP(z|x)Σx’P(y|x’,z)P(x’)

* For a more general treatment, see (LCB, UAI’19)



SUMMARY RL-CAUSAL (CIRCA 2020)

Do these strategies always work?

X Y

U

X Y

U 
∏ 

X Y

U 
∏’

X Y

U 
∏ 

IPW

1. Online

2. Off-policy

X Y

U 

Z Z X Y

U 

Do-calc 

3. Do-calculus

∏

(doπ’(x) → doπ(x))

(see(.) → doπ(x))

(→ doπ(x))
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IF NOT, WHAT IS MISSING?  

IS LEARNING IN INTERACTIVE 
SYSTEMS ESSENTIALLY DONE?

33



TOWARDS  
CAUSAL REINFORCEMENT LEARNING

%

34



CRL NEW CHALLENGES 
& LEARNING OPPORTUNITIES (I)

Task 1 
 Generalized Policy Learning  
 (combining online + offline learning)

Task 2 
 When and where to intervene?  
 (refining the policy space)

Task 3 
 Counterfactual Decision-Making  
 (changing optimization function based on 
 intentionality, free will, and autonomy) 35

&

!

(NeurIPS’15, ICML’17) 

(NeurIPS’18, AAAI’19)

(IJCAI’17, NeurIPS’19, ICML’20) 



CRL NEW CHALLENGES 
& LEARNING OPPORTUNITIES (II)

Task 4 
Generalizability & robustness of causal claims 
(transportability & structural invariances) 

Task 5 
Learning causal model by combining 
observations (L1) and experiments (L2)

Task 6                

 Causal Imitation Learning 
36

&

!

(NeurIPS’14, PNAS’16, UAI’19, AAAI’20)  

(NeurIPS’17, ICML’18, NeurIPS’19) 

(R-66 @CausalAI)



TASK 1. 
GENERALIZED POLICY LEARNING  

(Combining Online and Offline Learning)



TASK 1. 
GENERALIZED POLICY LEARNING  

(Combining Online and Offline Learning)

Junzhe Zhang



CRL-TASK 1. 
GENERALIZED POLICY LEARNING (GPL)

• Online learning is usually undesirable due to 
financial, technical, or ethical constraints. In 
general, one wants to leverage data collected 
under different conditions to speed up learning, 
without having to start from scratch. 

• On the other hand, the conditions required by 
offline learning are not always satisfied in many 
practical, real world settings.

• In this task, we move towards realistic learning 
scenarios where these modalities come together, 
including when the most traditional, and provably 
necessary, assumptions do not hold.

38



GENERALIZED POLICY LEARNING

Task 1. Input: P(x, y), learn: P(y | do(x)).  
- Robotics: learning by demonstration when the teacher                        
      can observe a richer context (e.g., more accurate sensors). 
- Medical: optimal experimental design from observational data.  

X Y

U

X Y

U

learning 
   task

- Off-policy a2 
- Do-calc ID  
- Online 

PhysicianFDA

39
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 pretend that physician and FDA are  
 exchangeable — call “naive TS”. 
In other words, “naive TS” attempts  
 to use observational data as prior.  
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Let’s ignore their differences, and  
 pretend that physician and FDA are  
 exchangeable — call “naive TS”. 
In other words, “naive TS” attempts  
 to use observational data as prior.  
Traditional TS means ignoring the  
 observational data. 
 

GENERALIZED POLICY LEARNING

Task 1a. Input: P(x, y), learn: P(y | do(x)).  
- Robotics: learning by demonstration when the teacher                        
      can observe a richer context (e.g., more accurate sensors) 
- Medical: optimal experimental design from observational data.  

X Y

U

X Y

U

task 1

- do-calc ID  
- off-policy a2

Master-ChefFDA-Chef

40

How could this be happening?! 
 Could more data be hurting?*

Why is naive-TS 
doing so badly? 

E(Y | X = 0)       < E(Y | X = 1)  
E(Y | do(X = 0)) > E(Y | do(X = 1)) Naive TS

Traditional TS



Could more data be hurting?

GENERALIZED POLICY LEARNING

Task 1a. Input: P(x, y), learn: P(y | do(x)).  
- Robotics: learning by demonstration when the teacher                        
      can observe a richer context (e.g., more accurate sensors) 
- Medical: optimal experimental design from observational data.  

X Y

U

X Y

U

task 1

- do-calc ID  
- off-policy a2

Master-ChefFDA-Chef

Let’s ignore their differences, pretending  
 that student-and master-chef robots are  
 interchangeable — call “naive TS”. 
 

How could this be happening?! 
 

Can we do better?

Why is naive-TS 
doing so badly? 

n = 250 200 150 100
41

Naive TS



Structural Explanation for Naive-TS’s behavior 
-- The Challenge of Non-Identifiability

X Y

UP[Y|X,U] U=0 U=1

X=0 0.1 0.9

X=1 0.5 0.3

E[Y|do(X)] E[Y|X]

X=0 0.66 0.1

X=1 0.36 0.3

X=U

P(U=0)=0.3

• SCM M (Unobserved)

• Distributions

• Causal Graph G

42
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E(Y | X = 0)       < E(Y | X = 1)  
E(Y | do(X = 0)) > E(Y | do(X = 1)) 

L1L2

  X=1 is looking quite 
 good, should I do() it?

+



X Y

UE[Y|X,U] U=0 U=1

X=0 0.1 0.9

X=1 0.5 0.3

E[Y|do(X)] E[Y|X]

X=0 0.66 0.1

X=1 0.36 0.39

X=U 

P(U=0)=0.3

• SCM M (Unobserved)

Y=U 

• Data

• Causal Graph G

L1L2

Don’t know!

Hopefully not!
Yes!

 

            Questions (more general):  

1. How do I know this pattern is not present in my data?  
2. Does this then imply that I should throw away all the data not 

collected by me (the agent) and learn from scratch?  
3. After all, is there any useful information in the obs. data? 

$

Structural Explanation for Naive-TS’s behavior 
-- The Challenge of Non-Identifiability

Don’t know :(

Hopefully not… 
Yes!

 

    Let’s try to understand how to leverage confounded data… 

43



Step 1. Extracting Causal Information  
from Confounded Observations

Solution: Bounding E[Y | do(x)] from observations P(x,y).

Theorem. Given observations coming from any  
distribution P(x,y), the average causal effect E[Y | do(x)]  
is bounded in [lx, hx], where
       lx = E[Y | x] P(x)    and    hx = lx + 1 - P(x).

44

• Linear Program formulation in other causal graphs (non-
parametric SCMs):  [Balke & Pearl, 1996;  
 Zhang and Bareinboim, IJCAI’17] 

• Incorporating parametric knowledge:  
[Kallus & Zhou, 2018; Namkoong et al., 2020] 

• Sequential treatments in longitudinal settings:  
[Zhang & Bareinboim, NeurIPS’19; ICML’20]



Step 2. Incorporating Bounds into Learning 
(e.g., Causal Thompson Sampling)

Input: prior parameters #, β,  
          causal  bounds [lx, hx] for each arm x. 
Initialization: Sx=0, Fx=0  for each arm x 

For t = 1, …, T do
 For each x  do 
              Repeat  
         Draw θx ~ Beta(Sx+#, Fx+ β). 
             Until θx ϵ [lx, hx]
 End
 Play do(xt) where Xt = argmaxx  θx.
 Observed Yt and update  Fxt and Sxt. 
End

/* [lx, hx] are 
computed from 
confounded 
observations */

/* Causal 
bounds are 
ascertained thr.  
a rejection 
procedure. */

45



Could more data be hurting?

GENERALIZED POLICY LEARNING

Task 1a. Input: P(x, y), learn: P(y | do(x)).  
- Robotics: learning by demonstration when the teacher                        
      can observe a richer context (e.g., more accurate sensors) 
- Medical: optimal experimental design from observational data.  

X Y

U

X Y

U

task 1

- do-calc ID  
- off-policy a2

Master-ChefFDA-Chef

Let’s ignore their differences, pretending  
 that student-and master-chef robots are  
 interchangeable — call “naive TS”. 
 

How could this be happening?! 

46

Traditional TS

Naive TS

Can we do better using 
  the causal bounds?



GENERALIZED POLICY LEARNING

Task 1. Input: P(x, y), learn: P(y |   do(x)).  
- Robotics: learning by demonstration when the teacher                        
      can observe a richer context (e.g., more accurate sensors) 
- Medical: optimal experimental design from observational data.  

X Y

U

X Y

U

task 1

- do-calc ID  
- off-policy a2

Master-ChefFDA

Let’s ignore their differences, pretending  
 that student-and master-chef robots are  
 interchangeable — call “naive TS”. 
 

How could this be happening?! 
 More data is hurting … 

Can we do better using 
  the causal bounds?

47

Causal TS

Traditional TS

Orders of magnitude 
improvement can be achieved in 
practice, and can be proved in 
general  settings (ZB, IJCAI’17). 

Step 3

Can we do better using 
  the causal bounds?



P(x, y)    Eπ[Y | do(x)]

Agent

Causal graph G under do(X)

GPL-boundingObservation

obs, obs …     obs do(x0) do(x1) …     do(x0)

48

X Y

U

X Y

U
Π

GENERALIZED POLICY LEARNING 
-- BIG PICTURE 
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P(x, y)    Eπ[Y | do(x)]

Agent

Causal graph G under do(X)

GPL-boundingObservation

obs, obs …     obs do(x0) do(x1) …     do(x0)

48

X Y

U

X Y

U
Π

GENERALIZED POLICY LEARNING 
-- BIG PICTURE 

48

SUMMARY (GPL Template):   

1. If policy is identifiable from offline methods, 
 return optimal one through Do-calculus/IPW. 

2. Extract causal information from obs. data, 
and compose causal bounds based on the 
available structural assumptions (on G & M).  

3. Offline + Online: Incorporate causal bounds 
into online allocation procedure.  

4. Prove regret bounds (Theory). 



NEW RESULT: GPL FOR  
DYNAMIC TREATMENT REGIMES

49

Observational

!1

Y"1 "2

!2

#
$%(&1 '1),  $%(&2 |&1, '1, '2)

!1

Y"1 "2

!2

#

((&,  ),  *)    E[Y | do(π)]

Agent
GPL- 

boundingOther agent with π

obs, obs, …            obs do(π0) …     do(π1)
49

• DTRs is a popular model for sequential treatment in 
medical domains [Murphy, 2003; Moodie et al., 2007]: 
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obs, obs, …            obs do(π0) …     do(π1)
49

• DTRs is a popular model for sequential treatment in 
medical domains [Murphy, 2003; Moodie et al., 2007]: 

* For details, see [Zhang & Bareinboim, NeurIPS’19; ICML’20].



TASK 2. 
WHEN AND WHERE TO INTERVENE? 

(Refining the policy space) 

Sanghack Lee



CRL-TASK 2. 
WHEN AND WHERE TO INTERVENE?

• In general, it’s assumed throughout the literature a 
policy space such that actions are fixed a priori 
(e.g., a set X = {X1, …, Xk}), and intervening is 
usually assumed to lead to positive outcomes.

• Our goal here is to understand when interventions 
are required, or if they may lead to unintended 
consequences (e.g., side effects). 

• In the case interventions may be needed, we would 
like to understand what should be changed in the 
underlying environment so as to bring a desired 
state of affairs about (e.g., maybe do(X1, X3, X7) 
instead of do(X1, X2, X3, …, X7)).

51

when  
  / if

where



UNDERSTANDING THE POLICY SPACE

• Consider the causal graph of a bandit model:  

52

X Y

U

X Y

UZ

• Our goal is to optimize Y (e.g., keep it high as much as 
possible), and we are not a priori committed to intervening     
on any specific variable, or intervening at all. 

no intervention{}

{X} {Z}

{X, Z}

causal graph G

• Consider now the 3-var causal graph:

intervention

policy space 



• Our goal is to optimize Y (e.g., keep it high as much as 
possible), and we are not a priori committed to intervening     
on any specific variable, or intervening at all. 

• Consider now the 3-var causal graph:

UNDERSTANDING THE POLICY SPACE
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X Y

UZ

{}

{X} {Z}

{X, Z}

causal graph G policy space 

• Causal-insensitive strategy: Ignore the causal structure G, 
take {X, Z} as one larger variable, and search based on 

argmaxxz E[Y | do(X = x, Z = z)] 
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X Y

UZ

{}

{X} {Z}

{X, Z}

causal graph G policy space 

• Causal-insensitive strategy: Ignore the causal structure G, 
take {X, Z} as one larger variable, and search based on 

argmaxxz E[Y | do(X = x, Z = z)] 

X 
Y

U
Z

Agent’s model:

G’:

Question -- Despite what is in the 
agent’s mind (or optimization function), 
it’s still the case that it will be 
evaluated by the SCM M. Is then being 
oblivious to the pair <G, M> okay?  
Can’t we just do more interventions?  

Key observations:  
 

1. Note that the implicit causal graph in 
the agent’s mind (G’ ), which follows 
from standard optimization procedure, 
is different than G. 

2. The true causal model G encodes 
constraints of the underlying 
environment (SCM M). $

Meaning, more do(X=x, Z=z), and 
things will eventually converge? 



THE CAUSAL STRUCTURE CANNOT BE DISMISSED

• SCM M (Unobserved) • Causal Graph G

X Y

UZ

P(U=1) = P(Uz=1) = 0.5

Z ← Uz 
X ← Z ⨁ U 
Y ← X ⨁ U

54



Z ← Uz 
X ← Z ⨁ U 
Y ← X ⨁ U

P(U=1) = P(Uz=1) = 0.5

E[Y| do(X)] = E[Y| do(X,Z)] = 0.5 

E[Y| do(Z)] = (Z ⨁ U) ⨁ U = Z   
So, if do(Z=1),  
 E[Y | do(Z = 1)] = 1

THE CAUSAL STRUCTURE CANNOT BE DISMISSED

• SCM M (Unobserved) • Causal Graph G

X Y

UZ
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• SCM M (Unobserved) • Causal Graph G

X Y

UZ
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• A causal insensitive strategy (i.e., “all-at-once”, do(X,Z)) will 
not pick up the do(Z)-intervention, and will never converge!

• A naive, “all-subsets” strategy works since it includes do(Z=1)

,



Z ← Uz 
X ← Z ⨁ U 
Y ← X ⨁ U

P(U=1) = P(Uz=1) = 0.5

E[Y| do(X)] = E[Y| do(X,Z)] = 0.5 

E[Y| do(Z)] = (Z ⨁ U) ⨁ U = Z   
So, if do(Z=1),  
 E[Y | do(Z = 1)] = 1

THE CAUSAL STRUCTURE CANNOT BE DISMISSED

• SCM M (Unobserved) • Causal Graph G

X Y

UZ

55

• A causal insensitive strategy (i.e., “all-at-once”, do(X,Z)) will 
not pick up the do(Z)-intervention, and will never converge!

• A naive, “all-subsets” strategy works since it includes do(Z=1)

,



Z ← Uz 
X ← Z ⨁ U 
Y ← X ⨁ U

P(U=1) = P(Uz=1) = 0.5

E[Y| do(X)] = E[Y| do(X,Z)] = 0.5 

E[Y| do(Z)] = (Z ⨁ U) ⨁ U = Z   
So, if do(Z=1),  
 E[Y | do(Z = 1)] = 1

THE CAUSAL STRUCTURE CANNOT BE DISMISSED

• SCM M (Unobserved) • Causal Graph G

X Y

UZ

55

• A causal insensitive strategy (i.e., “all-at-once”, do(X,Z)) will 
not pick up the do(Z)-intervention, and will never converge!

• A naive, “all-subsets” strategy works since it includes do(Z=1)

 Can we do better than these two naive strategies? 

,



do()

do(X=1)
do(X=0)

do(Z=0)
do(Z=1)

do(X=0,Z=0)
do(X=0,Z=1)
do(X=1,Z=0)
do(X=1,Z=1)

{}

do(X)

do(Z)

do(X,Z)

ActionsIntervention 
Sets (IS)

POLICY SPACE (EXAMPLE) 

{}

{X} {Z}

{X, Z}

X Y

UZ

Causal graph G

Policy space 
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do()

do(X=1)
do(X=0)

do(Z=0)
do(Z=1)

do(X=0,Z=0)
do(X=0,Z=1)
do(X=1,Z=0)
do(X=1,Z=1)

{}

do(X)

do(Z)

do(X,Z)

ActionsIntervention 
Sets (IS)

POLICY SPACE (EXAMPLE) 

{}

{X} {Z}

{X, Z}

X Y

UZ

Causal graph G

Policy space 
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 We’ll study properties of the policy space with respect 
to the the topological constraints imposed by M in G. 



Given <G,Y>, a set of variables X ⊆V \ {Y} is said to be a minimal 
intervention set if there is no X’⊂X such that E[Y | do(x’)] = E[Y | do(x)] 
for every SCM conforming to G where x’ is consistent with x.

Definition (Minimal Intervention Set, MIS)

Implication: prefer playing do(X) to playing do(X, Z).

E[ Y | do(x,z) ] = E[ Y | do(x) ]
∵ (Y⟂Z | X) in           (Rule 3 of do-calculus)GX, Z

57

PROPERTY 1:  
INTERVENTIONAL  EQUIVALENCE

X Y

UZ



do()

do(X=1)
do(X=0)

do(Z=0)
do(Z=1)

do(X=0,Z=0)
do(X=0,Z=1)
do(X=1,Z=0)
do(X=1,Z=1)

{}

do(X)

do(Z)

do(X,Z)

ActionsIntervention 
Sets (IS)
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MIS

PROPERTY 1: MIS (EXAMPLE)

{}

{X} {Z}

{X, Z}

X Y

UZ

Causal graph G

Policy space 



do()

do(X=1)
do(X=0)

do(Z=0)
do(Z=1)

do(X=0,Z=0)
do(X=0,Z=1)
do(X=1,Z=0)
do(X=1,Z=1)

{}

do(X)

do(Z)

do(X,Z)

ActionsIntervention 
Sets (IS)
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MIS

✔

✔

✔

✗

PROPERTY 1: MIS (EXAMPLE)

{}
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X Y

UZ

Causal graph G

Policy space 



Implication: playing do(Z) should be preferred to playing do().

Given <G,Y>, let X∈MISs. X is said to be a possibly-optimal MIS if 
there exists a SCM M conforming to G such that   

max x E[Y | do(X=x)] > max W∈MIS \ {X} E[Y | do(W=w)] 

Definition (Possibly-Optimal MIS, POMIS)

 E[Y] ≤ E[Y|do(z*)]∴

E[Y] = ∑z E[Y|do(z)] P(z)  

        ≤ ∑z E[Y|do(z*)] P(z)  

        = E[Y|do(z*)]

59

PROPERTY 2: 
PARTIAL-ORDEREDNESS

X Y

UZ

z*  argmaxz E[Y|do(z)]≡
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PROPERTY 2: 
PARTIAL-ORDEREDNESS

X Y

UZ

z*  argmaxz E[Y|do(z)]≡
We provide a complete characterization 
of POMIS & algorithm that enumerates 
all POMISs given a causal graph G.
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{}
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do(X,Z)

actionsintervention 
sets
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PROPERTY 2: POMIS (EXAMPLE)
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{X} {Z}

{X, Z}
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Causal graph G

Policy space 

POMIS share the reward mechanism (SCM)  
& POMIS’ arms are dependent.



Structural Property 3: Quantitave

Relationships Across Arms

A

B

Y

C

POMISs are ;, {B}, and {C}.

P(y) =
P

a,b,c Pb(c|a)Pc(a, b, y)

Pb(y) =
P

a,c P(c|a, b)
P

b0 P(y |a, b0, c)P(a, b0)

Pc(y) =
P

a,b P(y |a, b, c)P(a, b)

Pc(y) =
P

a Pb(y |a, c)Pb(a)

A

B

C

Y

PROPERTY 3:  
ARMS’ QUANTITATIVE RELATIONSHIPS

• Example 
 

Given POMISs {}, {B}, and {C}:

• Goal: infer an arm’s expected reward from other arms’ data, 
                  P(y|do(x)) ← { P(V | do(Z)) }Z∈POMIS\{X}

• New ID algorithm (z2ID) to find a matching POMIS, that can 
borrow some additional data.
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Structural Property 3: Minimum Variance

Weighting

—
...

D;

—
...

...

Db=0

—

Db=1

—
...

.

Dc=0

—
..

Dc=1

Samples
D

—
...

D(b)
;

—
...

...
D(b)

b=0

—D(b)
b=1

—
...

.

D(b)
c=0

—
..

D(b)
c=1

⇥ number of
bootstraps

Bootstrap Samples
D

(b)

Bootstrap Estimates

✓̂; ✓̂b=0 ✓̂b=1 ✓̂c=0 ✓̂c=1

Weighted Estimates

PROPERTY 3: 
ARMS’ QUANTITATIVE RELATIONSHIPS

• Make the most of data — Minimum Variance Weighting 
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WHEN AND WHERE TO INTERVENE -- 
ALGORITHMS & EXPERIMENTS
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Trials
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POMIS
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BF

• Performance: POMIS+ ≥ POMIS ≥ MIS ≥ Brute-force

• We embed these results into TS/UCB solvers: 
• z2-TS: posterior distributions for expected rewards → adjust 

‘posterior distributions’ reflecting all used data 

• z2-kl-UCB: upper confidence bounds for expected rewards →  
adjust ‘upper bounds’ by taking account samples from other arms
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Ex~π[Y | do(x)]?

Agent

Causal Graph G under do(x)
POMIS, 
formulas

obs(), do(b), ….       do(c)

WHEN & WHERE TO INTERVENE -- 
BIG PICTURE

64

no datano data
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NEW RESULT:  
WHERE TO INTERVENE & WHAT TO SEE

65 65

CX1

X2 Y

do(x1|c), do(x2|x1)

CX1

X2 Y

Π

do(x2|c)

CX1

X2 Y

Π’Additional Context C

…

* both C and X1 can become a context
…

• In addition to deciding where to intervene, agents also need  
to decide where to look… 

Causal Graph G



WHERE TO INTERVENE & 
WHAT TO SEE — POLICY SPACE

66

do() do(x2|x1)

do(x1)

do(x1|c)

do(x2)

do(x1|c), 
do(x2|x1)

do(x2|c)

do(x1), 
do(x2|c)

do(x2|c,x1)

do(x1), 
do(x2|c,x1)

do(x1|c), 
do(x2|c,x1)

do(x1|c), 
do(x2|c)

do(x1), 
do(x2)

do(x1|c), 
do(x2)

do(x1), 
do(x2|x1)

{X1}

{X2}

{X1, X2}

CX1

X2 Y

{}

Causal Graph G



WHERE TO INTERVENE & 
WHAT TO SEE — POLICY SPACE
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CX1
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Policies with the same 
maximum expected rewards



WHERE TO INTERVENE & 
WHAT TO SEE — POLICY SPACE
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WHERE TO INTERVENE & 
WHAT TO SEE — POLICY SPACE
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maximum expected rewards



WHERE TO INTERVENE & 
WHAT TO SEE — POLICY SPACE
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2. possibly-optimal policies 
among min. policies.
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do(x2|c,x1)

do(x1|c), 
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* For details, see [R-63 @CausalAI].
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COUNTERFACTUAL DECISION-MAKING 
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CRL-TASK 3. 
COUNTERFACTUAL DECISION-MAKING

• Agents act in a reflexive manner, without 
considering the reasons (or causes) for behaving 
in a particular way. Whenever this is the case, 
they can be exploited without never realizing. 

• This is a general phenomenon in online learning 
whenever the agent optimizes by Fisherian rand./ 
the do-distribution (incl. all known RL settings).

• Our goal is to endow agents with the capability of 
performing counterfactual reasoning (taking their 
own intent into account), which leads to a more 
refined notion of regret & a new OPT function.
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COUNTERFACTUAL DECISION-MAKING

Question:  
  

  How should one select the treatment (x*) to a particular 
   unit U=u so as to maximize expected reward (Y)?

X Y

U

Applications:  
  
» Robotics 
» Medical Treatment  
» Job Training Program  

What if we have observational data? Experimental data?

70



X Y

{B, D} X = type of the machine (x0, x1) 
Y = reward  (y0, y1) 
B = blinking machine (b0, b1) 
D = drunkenness level (d0, d1)

Goal: Find a strategy (∏) so as to minimize cumulative regret.

• Regulations: payout has to be ≥ 0.3. 
• Casino learns how customers operates and decides to set 

the payout structure as follows (using ML):

E [y1 | 
X, B, D]

D = 0 D = 1
B = 0 B = 1 B = 0 B = 1

X = x1 0.10 0.50 0.40 0.20
X = x0 0.50 0.10 0.20 0.40

GREEDY CASINO.  
INDIVIDUAL VERSUS POPULATION-LEVEL DECISIONS
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X Y

{B, D} 

• Casino’s model: fX(B, D), P(B), P(D), 

E [y1 | 
X, B, D]

D = 0 D = 1
B = 0 B = 1 B = 0 B = 1

X = x1 0.10 0.50 0.40 0.20
X = x0 0.50 0.10 0.20 0.40

random  
sample 
  (L1) 

E(y1 | X = x0) = 0.15  
E(y1 | X = x1) = 0.15 

D1

GREEDY CASINO.  
INDIVIDUAL VERSUS POPULATION-LEVEL DECISIONS
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X Y

{B, D} 

• Casino’s model: fX(B, D), P(B), P(D), 

E [y1 | 
X, B, D]

D = 0 D = 1
B = 0 B = 1 B = 0 B = 1

X = x1 0.10 0.50 0.40 0.20
X = x0 0.50 0.10 0.20 0.40

random  
sample 
  (L1) 

E(y1 | X = x0) = 0.15  
E(y1 | X = x1) = 0.15 

D1 E(y1 | do(X = x0)) = 0.30 
E(y1 | do(X = x1)) = 0.30

D2

     random  
experiment 
        (L2) 

GREEDY CASINO.  
INDIVIDUAL VERSUS POPULATION-LEVEL DECISIONS

72

X Y

{B, D} ∏ 



• Attempt 1. ML ((-greedy, Thompson Sampling, UCB, EXP3). 

* Bandits minimize short-term regret based on the do()-distribution. 

GREEDY CASINO.  
INDIVIDUAL VERSUS POPULATION-LEVEL DECISIONS



GREEDY CASINO: CAN WE DO BETTER? 

74



GREEDY CASINO: CAN WE DO BETTER? 

• Attempt 2. Counterfactual randomization 
• RDC (Regret Decision Criterion):

X* = arg maxx E(YX = x1 | X = x0)

74

• This should be read as the counterfactual sentence: 
    “Expected value of Y had X been x1, given that X = x0?”
    (Also known as Effect of Treatment on the Treated. )

X* = arg maxx E(Y | do(X = x))



GREEDY CASINO: CAN WE DO BETTER? 

• Attempt 2. Counterfactual randomization 
• RDC (Regret Decision Criterion):

X* = arg maxx E(YX = x1 | X = x0)

74

• This should be read as the counterfactual sentence: 
    “Expected value of Y had X been x1, given that X = x0?”
    (Also known as Effect of Treatment on the Treated. )

X* = arg maxx E(Y | do(X = x)) = E(YX = x)

*Also called  
counterfactual,  but too 

weak (L2),  we’ll 
just  call do(). 



GREEDY CASINO: CAN WE DO BETTER? 

• Attempt 2. Counterfactual randomization 
• RDC (Regret Decision Criterion):

X* = arg maxx E(YX = x1 | X = x0)

74

• This should be read as the counterfactual sentence: 
    “Expected value of Y had X been x1, given that X = x0?”
    (Also known as Effect of Treatment on the Treated. )

• General counterfactuals are difficult (or impossible) to 
evaluate from data (even experimentally), except for some 
special conditions (e.g., binary treatment, backdoor 
admissibility, unconfoundedness) (Pearl, 2000, Ch. 9).



COUNTERFACTUAL DECISION-MAKING

• RDC (Regret Decision Criterion): 
X* = argmaxx E(YX = x1 | X = x0) 

• Evaluating RDC-type expressions: 
–  Note that the agent is about to play machine x0,

    which means that (the unknown) fX(b, d) evaluated to x0.
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–  Pause, interrupting decision flow, and wonder:

“I am about to play x0, would I be better off going 
 with my intuition (x0) or against it (x1)?”
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REGRET DECISION CRITERION: 
EXPERIMENTAL RESULTS 

• Greedy Casino Parametrization 
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• What if the experimental distribution is available (4-arm case)? 

REGRET DECISION CRITERION: 
EXPERIMENTAL RESULTS 
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Ex~π[Yx | x’ ]?

Agent

under ctf. randomizationthe environment

Yx0|x1, Yx1|x1, …, Yx1|x0

TASK 3. COUNTERFACTUAL LEARNING

78
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APPLICATION: HUMAN-AI COLLABORATION 
(CAN HUMANS BE OUT OF THE LOOP?*)

7979

• Observation from the RDC, if E[Yx|x’] = E[Y|do(x)] → the 
human's intuition has no value of information.

• In words, the human expert could be replaced without 
sacrificing the performance of the system, at least in 
principle full autonomy can be achieved.

• Contribution: New Markovian properties (L2, L3) that 
establishes whether an agent can be autonomous. 

* For details, see [R-64 @CausalAI].
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SUMMARY CRL TASKS



   1. Generalized Policy Learning (on+offline)
• Online learning is too costly and learning 

from scratch is usually impractical. Still, the assumptions  
of offline learning are rarely satisfied in practice.

• Goal: Move towards more realistic learning scenarios 
where the two modalities come together, extracting as 
much causal information as possible from confounded 
data, and using it in the most efficient way.

   2. When and where to intervene? 
• Agents usually have a fixed policy space (actions), and 

intervening is usually assumed as beneficial.
• Goal: Understand when interventions are needed and 

whenever this is the case, what should be changed in 
the system to bring about the desired outcome. 

81
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   3. Counterfactual Decision-Making  
        (intentionality, regret & free will)

• Agents act in a reflexive manner, without considering 
the reasons (causes) for behaving in a certain way. 

• Goal: Endow agents with the capability of taken their 
own intent into account, which will lead to a new notion 
of regret based on counterfactual randomization.

   4. Generalizable and Robust Decision-Making 
      (transportability & structural invariances) 

• The knowledge acquired by an agent is usually 
circumscribed to the domain where it was deployed.

• Goal: Allow agents to extrapolate knowledge, making 
more robust and generalizable claims by leveraging the 
causal invariances shared across environments. 82
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   5. Learning Causal Models by Combining  
         Observations & Experimentation

• Agents have a fixed causal model, constructed from 
templates or from background knowledge.

• Goal: Allow agents to systematically combine the 
observations and interventions it’s already collecting     
to construct an equivalence class of causal models.

   6. Causal Imitation Learning 
• Mimicking is one of the common ways of learning. 

Whenever the demonstrator has a different causal 
model, imitating may lead to disastrous side effects. 

• Goal: Understand the conditions so that imitation by 
behavioral cloning is valid and leads to faster learning. 
Otherwise, introduce more refined imitation modalities.

(black-box)
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CRL CAPABILITIES (III)

83
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CRL CAPABILITIES (III)

83

     1. Generalized Policy Learning (on+offline) 
        Combining L1 + L2 interactions to learn policy ∏.  

      2. When and where to intervene?  
        Identifying subset of L2  and optimize the policy space.  

      3. Counterfactual Decision-Making 
        Optimization function based on L3 counterfactual & random. 

      4. Generalizability and Robustness 
        Generalizing from training environment (SCM M) to SCM M*. 

      5. Learning Causal Model G 
        Combining L1 + L2 interactions to learn G (of M).  

      6. Causal Imitation Learning 
       Learning L2 -policy based on partially observable L1-data (expert).

CRL (CHEAT SHEET)

./0



• CI & RL are fundamentally intertwined and novel learning 
opportunities emerge when this connection is fully realized. 

• The structural invariances encoded in the causal graph 
(w.r.t. SCM M) can be leveraged and combined with RL 
allocation procedures leading to robust learning. 
• Still, failure to acknowledge distinct invariances of the 
environment (M) almost always leads to poor decision-making.

• CRL opens up a new family of learning problems that were 
neither acknowledged nor understood before, including the 
combination of online & offline learning (GPL), when/where to 
intervene, counterfactual decision-making, generalizability 
across environments, to cite a few.
• Program: Develop a principled framework for designing 
causal AI systems integrating [observational, experimental, 
counterfactual] data, modes of reasoning, knowledge.

• Leads to a natural treatment to human-like              
  explainability and rational decision-making. 

CONCLUSIONS

84
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